

SHFCA 5th Annual Conference

Hydrogen Gas Inject

Project Update

James Verlaque

Manager, Technology Testing and Certification

- Technical, economic and operational feasibility of injection into the UK gas network of hydrogen generated by electrolysis powered by excess renewables
- Project partners: ITM Power (Trading) Ltd, SSE plc, SHFCA, Kiwa Gastec
- £164k, Part funded by grant from UK Technology Strategy Board

Technology Strategy Board Driving Innovation

\int

Methodology – Five work packages

- **1. Preliminary logistic research**
- 2. Preliminary system research
- 3. Modelling
- 4. Simulation
- **5.** Management and Communications
- Results to be published 24th October 2013

Cannot present key findings but will introduce methodology and illustrate some of the principles applied with regard to Hydrogen and low carbon heat

- 1 year 1 minute resolution
- Number of curtailments
- Performance data for fossil and nuclear generation
 - Gas flow and power demand records

Alternative technologies for absorbing renewables

- Evaluation of production and storage issues at a German wind turbine gas injection facility
- Options for storage systems, flow metering and mixing processes
- Investigate Health and Safety aspects of usage
 - Review of NaturalHy and Hythane (2000-2007)
 - Odorisation
 - Variable composition and billing
 - Impact of elevated H2 concentration on UK gas appliance stock
 - Other impacts

Modelling

Define generation model to calculate aggregate surplus capacity

- Historic demand, conventional power and aggregated wind power
- Construct 2nd model to include parameters H2 production, storage and release/injection
 - Historic gas flow, definable injection rates, calculate theoretical H2 supply to gas grid
 - Projections of future capacity and curtailment

Techno-economic analysis

- Injection v H2 pipeline
- Value of stored energy, value of lost wind farm production
- H2 v battery etc
- Electrolyser costs
- Risk quantification

Integration of models

- Incremental implementation
- Simulating H2 production from single wind turbine farms (3-20MW)

Predict scaled UK roll-out

- Introduction scenario effect of limited addition
- Transition scenario larger scale introduction
- Large H2 capacity introduction fluctations in demand and atmospheric temperature
- Analysis of DSM provision

Determine benefits:

- CO2 emission, wind curtailment, removal of need to improve electrical grid infrastructure
- Use of electrolysis to produce sufficient H2 to decarbonise gas network as per HMG's Heat Strategy

Management and Communications

Steering Committee

- quarterly reports
- Work programme review

Results to be presented at Seminar 24th October 2013

Hydrogen and low carbon heat -Principles

Envisage Hydrogen can be injected into the grid:

- Very low/Low 0-10%v/v (0-3% by energy)
- Intermediate 17-20% v/v
- Town gas ~55% v/v, or

Hydrogen can be used at 100%

At intermediate, towns gas and 100% - where consistent quality required – H2 production and storage requirements similar

Note that if you fix %H2 ex-grid storage is necessary (production could be out of sync with demand – sunny, windy day in August)

- Very low/Low levels majority of existing appliances probably ok – tbc
- Intermediate levels– possibly a major appliance change programme required in UK context
- Towns gas levels major appliance replacement programme –
 - Singapore Gas works very well bespoke appliances
 - PE pipeline distribution
- 100% H2 major appliance replacement programme

so to use H2 to decarbonise domestic heat there are a number of options

- Consider replacement of 18million kWh natural gas by H2, displacing 3500t of CO2 (zero carbon Hydrogen)
- Options to supply the following number of properties at a variety of v/v%:
 - **30000** @10%
 - **14085 @20%**
 - **4485 @55%**
 - **1000** @100%

Easier to make no/little change to 30000 or change 1000 completely?

- Load swing 250kW to 10MW summer to winter
- Without storage this is extremely challenging
- But significant increase of low cost renewables coming into production which should be used in a productive fashion
- Useful to present a couple of extreme examples

100% H2 – 1000 house supply facility

From electrolyser when surplus renewable energy available.

Disadvantage:

- CAPEX electrolysis
- Storage requirement
- Advantages:
 - Use of renewables-low C
 - Can be scaled up

From range of supplies plus electrolyser:

- Natural Gas via SMR
- Plasma gasification of RDF
- Disadvantage:
 - Storage
 - Opex Natural Gas
 - RDF supplies
 - Advantages:
 - Lower CAPEX
 - Can be scaled up

- Above production options but rolled out to inject into the grid at say 10% H2
- Number of houses become the limiting factor:
 - For example 2.5MW electrolyser
 - 300,000 homes (Bristol) for 100d per summer,
 - Or
 - one new generation gas turbine?

Next steps – Kiwa Gastec thoughts

- Technological challenges are surmountable we can take positive steps quickly if the will is there at any %H2
- If low C hydrogen (less than biomass?) is available in large quantities, pipeline distribution becomes attractive for:
 - Heating
 - Industry
 - Transport
- Long term future 100% H2 could be most feasible?
- Perhaps start with small localised grids?

Next steps – Kiwa Gastec thoughts

Pressing DECC to compare end to end costs of:

- Hydrogen
- Heat pumps
- Low carbon sourced district heating

Safety is vital and pushing for widespread engagement – new project:

- 60kW gas from internal pipework leak
- Substantial volume form mains leak
- Simulated leak from low pressure system in car
- Compare gases: CH4, low%H2, 55% H2, 100%H2

Thank you

james.verlaque@kiwa.co.uk

Kiwa Gastec and H2

- Testing & Certification
- Compliance
- Risk assessment
- **DSEAR**
- Technology evaluation
- Training
- Consultancy
- Technical services
- Automotive component testing