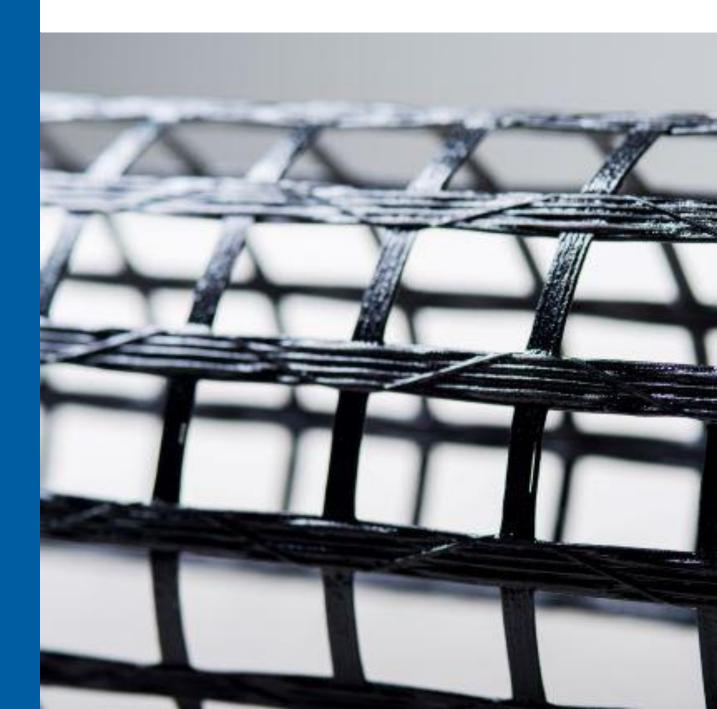
Environmental Product Declaration (EPD) According to ISO 14025 and EN 15804

ACEGrid®


Registration number:
Issue date:
Valid until:
Declaration owner:
Publisher:
Program operator:
Status:

EPD-Kiwa-EE-158054-EN 22-12-2023 22-12-2028 Gold-Joint Industry Co., Ltd. Kiwa-Ecobility Experts Kiwa-Ecobility Experts verified

1 General information

1.1 PRODUCT

ACEGrid®

1.2 REGISTRATION NUMBER

EPD-Kiwa-EE-158054-EN

1.3 VALIDITY

Issue date: 22-12-2023

Valid until: 22-12-2028

1.4 PROGRAM OPERATOR

Kiwa-Ecobility Experts Voltastraße 5 13355 Berlin DE

Frank Huppertz (Head of Kiwa-Ecobility Experts)

1.5 OWNER OF THE DECLARATION

Manufacturer: Gold-Joint Industry Co., Ltd. Address: No.33, Jing 3 Rd. Wuqi Dist., 43541 Taichung City, Taiwan (R.O.C.)

F. Herel

Prof. Dr. Frank Heimbecher

(Chairman of the independent expert

committee - Kiwa-Ecobility Experts)

E-mail: marketing@geoace.com
Website: www.geoace.com
Production location: Gold-Joint Industry Co., Ltd.
Address production location: No.33, Jing 3 Rd. Wugi Dist., 43541 Taichung City

1.6 VERIFICATION OF THE DECLARATION

The independent verification is in accordance with the ISO 14025:2011. The LCA is in compliance with ISO 14040:2006 and ISO 14044:2006. The EN 15804:2012+A2:2019 serves as the core PCR.

🗌 Internal 🗹 External

Elisabeth Amat Guasch, Greenize

1.7 STATEMENTS

The owner of this EPD shall be liable for the underlying information and evidence. The programme operator Kiwa-Ecobility Experts shall not be liable with respect to manufacturer data, life cycle assessment data and evidence.

1.8 PRODUCT CATEGORY RULES

Kiwa-Ecobility Experts (Kiwa-EE) – General Product Category Rules (2022-02-14)

Kiwa-Ecobility Experts (Kiwa-EE) – Specific Product Category Rules: Geosynthetic products (2023-07-21)

1 General information

1.9 COMPARABILITY

In principle, a comparison or assessment of the environmental impacts of different products is only possible if they have been prepared in accordance with EN 15804. For the evaluation of the comparability, the following aspects have to be considered in particular: PCR used, functional or declared unit, geographical reference, the definition of the system boundary, declared modules, data selection (primary or secondary data, background database, data quality), scenarios used for use and disposal phases, and the life cycle inventory (data collection, calculation methods, allocations, validity period). PCRs and general program instructions of different EPDs programs may differ. Comparability needs to be evaluated. For further guidance, see EN 15804+A2 (5.3 Comparability of EPD for construction products) and ISO 14025 (6.7.2 Requirements for comparability).

1.10 CALCULATION BASIS

LCA method R<THiNK: Ecobility Experts | EN15804+A2

LCA software*: Simapro 9.1

Characterization method: EN 15804 +A2 Method v1.0

LCA database profiles: EcoInvent version 3.6

Version database: v3.15 (2023-07-12)

 * Used for calculating the characterized results of the Environmental profiles within R<THiNK.

1.11 LCA BACKGROUND REPORT

This EPD is generated on the basis of the LCA background report 'ACEGrid®' with the calculation identifier ReTHiNK-58054.

2.1 PRODUCT DESCRIPTION

ACEGrid® represents a line of flexible, high-strength woven geogrids made from high molecular weight, low-creep polyester (PET) yarns. The geogrids offer a wide range of tensile strengths, up to 1000 kN/m, to suit various soil reinforcement applications. The weight of the product is between 240 g/m² and 2600 g/m². Distinguished by their high tensile strength at low strain levels and anti-creep performance, these geogrids provide durability against environmental conditions like UV light, weathering, and chemicals. Customizable to specific project requirements, ACEGrid® geogrids are effective in diverse civil and transportation engineering projects worldwide. Renowned for their high quality, long-term durability, and ease of installation, these geogrids are a cost-effective solution for long-term structural safety.

The following products are covered in this EPD: GG40-I, GG60-I, GG80-I, GG100-I, GG110-I, GG150-I, GG200-I, GG300-I, GG400-I, GG600-I, GG800-I, GG900-I, GG1000-I.

	Test	SI Unit	GG40-I	GG60-I	GG80-I	GG100-I	GG110-I	GG150-I	GG200-
Material			High Te	nacity PET	Yarn Coa	ted With P\	'C		
Unit Weight - ± 20%	ISO 9864	g/m²	240	280	300	330	360	430	510
Mechanical Index Properties									
Tensile Strength ,Tult - MD	ISO 10319	kN/m	40	60	80	100	110	150	200
Tensile Strength ,Tult - CD	ISO 10319	kN/m	30	30	30	30	30	30	30
Elongation - MD	ISO 10319	%	10	10	10	10	10	10	12
Elongation - CD	ISO 10319	%	12	12	12	12	12	12	12
Durability	EN ISO 12447		to be durable n the basis of						nperatures
Product Properties									
Product Properties									
Physical Properties	Test	SI Unit	GG300-I	GG400-I	100 IS 10	Unit of the Action	2000. 200	GG900-1	GG1000-
and a second second a second se	Test	SI Unit	A DECEMBER OF	GG400-I nacity PET	100 IS 10	Unit of the Action	2000. 200	GG900-I	GG1000-
Physical Properties	Test ISO 9864	SI Unit	A DECEMBER OF	100000000000000000000000000000000000000	100 IS 10	ted With PV	2000. 200	GG900-I 2300	GG1000- 2600
Physical Properties Material			High Te	nacity PET	Yarn Coa	ted With PV	′C	1	
Physical Properties Material Unit Weight - ± 20%			High Te	nacity PET	Yarn Coa	ted With PV 20 2	′C	1	
Physical Properties Material Unit Weight - ± 20% Mechanical Index Properties	ISO 9864	g/m²	High Te 740	nacity PET	Yarn Coa 15	20 2 0 3	7 C	2300	2600
Physical Properties Material Unit Weight - ± 20% Mechanical Index Properties Tensile Strength ,Tult - MD	ISO 9864 ISO 10319	g/m² kN/m	High Te 740 300	nacity PET 1020 400	Yarn Coa 15: 60	ted With PV 20 2 0 3	7C 2000	2300 900	2600 1000
Physical Properties Material Unit Weight - ± 20% Mechanical Index Properties Tensile Strength ,Tult - MD Tensile Strength ,Tult - CD	ISO 9864 ISO 10319 ISO 10319	g/m² kN/m kN/m	High Te 740 300 50	1020	Yarn Coa 15: 60	Led With PV 20 2 0 3 5 5	rC 2000 300 100	2300 900 100	2600 1000 100

2.2 APPLICATION (INTENDED USE OF THE PRODUCT)

ACEGrid® geogrids, known for their commendable tensile strength and adaptability, are considered for various applications within civil engineering. Their versatility has been recognized for potential deployment across different terrains and functionalities.

For Mechanically Stabilized Earth Walls (MSEW) and Reinforced Soil Slopes (RSS), ACEGrid® geogrids have been explored to provide a synergy between geogrid attributes and backfill materials. These combined systems aim to offer both stability and flexibility. They're considered for diverse structures, including retaining walls, road embankments, bridge abutments, landfill embankments, sea walls, rockfall prevention embankments, crusher headwalls and loading ramps, and flood detention ponds, among others.

In the realm of basal reinforcement, the inherent strength of ACEGrid® geogrids suggests their potential in enhancing foundational structures. Their application might span embankments on soft soil, reinforced embankment on piles, and reinforcement over cavities.

Mining pits, which can sometimes face challenges like shifts or collapses, might benefit from ACEGrid® geogrids when integrated appropriately. Their presence could potentially bolster the site, adding a layer of protection and enhancing overall safety during mining operations.

For energy infrastructure projects, ACEGrid® geogrids can support the construction of oil and gas pipelines, wind farms, solar farms, and other energy infrastructure by providing ground stabilization and reinforcement. Additionally, their integration could be beneficial in safeguarding against landslides, especially during the installation and utilization of landfill capping systems on challenging terrains.

In concluding, ACEGrid® geogrids offer promising options for various civil engineering tasks. However, their effectiveness is best evaluated concerning the specific requirements and conditions of each project.

2.3 REFERENCE SERVICE LIFE

RSL PRODUCT

The RSL of the geogrid depends on the use from a temporary work or a long-term use (from 1 year to 120 years). For examples, geogrids used in road embankments have a typical service life of 60 years. Geogrid used for retaining walls which have a typical service life of 120 years.

USED RSL (YR) IN THIS LCA CALCULATION:

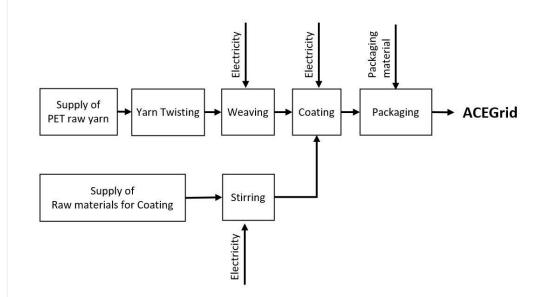
120

2 Product

2.4 TECHNICAL DATA

See above (2.1).

2.5 SUBSTANCES OF VERY HIGH CONCERN


The product contains less than 0.1% of substances included in the "Candidate list of substances of very high concern for authorisation" (SVHC).

2.6 DESCRIPTION PRODUCTION PROCESS

The production process of ACEGrid® geogrid begins with PET yarn as its fundamental material. Prior to weaving, the original yarn is twisted into processed yarn, a task executed by external partnering manufacturers. Upon completion, the processed yarn is transported via truck back to the Gold-Joint factory.

The processed yarn is used directly for the ACEGrid® production line. The processed yarn is placed on the creel for weaving. Weaving is a method of fabric production. Two different sets of yarns are woven and interlaced at right angles, i.e. the longitudinal warp direction (machine direction) and the transversal weft direction (cross machine di-reaction).

The finished mesh product of weaving, it is dipped in tank to coat the mesh with a protective. After drying, the coated mesh is cut to specific length and stored, the outer packaging is done before shipment.

2.7 CONSTRUCTION DESCRIPTION

The applications of ACEGrid® are extensive, generally include RSS, MSEW, bridge abutment, embankment, etc. The ACEGrid® construction can be divided into the following parts:

- 1. Site preparation
- 2. Geogrid installation
- 3. Backfill and compaction
- 4. Facing installation
- 5. Drainage system installation
- 6. Surface drainage and vegetation

ACE Geosynthetics

2 Product

3 Calculation rules

3.1 DECLARED UNIT

One square meter ACEGrid®

One square meter of ACEGrid®. The following products are covered in this EPD: GG40-I, GG60-I, GG80-I, GG100-I, GG100-I, GG100-I, GG100-I, GG200-I, GG300-I, GG400-I, GG600-I, GG800-I, GG900-I, GG1000-I.

reference_unit: square meter (m2)

3.2 CONVERSION FACTORS

Description	Value	Unit
reference_unit	1	m2
weight_per_reference_unit	1.000	kg
Conversion factor to 1 kg	0.999540	m2

3.3 SCOPE OF DECLARATION AND SYSTEM BOUNDARIES

This is a Cradle to gate with options, modules C1-C4 and module D LCA. The life cycle stages included are as shown below:

(X = module included, ND = module not declared)

A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	ND	Х	Х	Х	Х	Х						

The modules of the EN15804 contain the following:

Module A1 = Raw material supply	Module B5 = Refurbishment
Module A2 = Transport	Module B6 = Operational energy use
Module A3 = Manufacturing	Module B7 = Operational water use
Module A4 = Transport	Module C1 = De-construction / Demolition
Module A5 = Construction -	Modulo C2 - Transport
Installation process	Module C2 = Transport
Module B1 = Use	Module C3 = Waste Processing

Module B2 = Maintenance	Module C4 = Disposal
Madula PZ - Dapair	Module D = Benefits and loads beyond the
Module B3 = Repair	product system boundaries
Module B4 = Replacement	

3.4 REPRESENTATIVENESS

The input data are representative for ACEGrid®, a product of Gold-Joint Industry Co., Ltd.. The data are representative for Asia.

3.5 CUT-OFF CRITERIA

Product Stage (A1-A3)

The following inputs have been placed under cut-off criteria (<1% of the total mass):

-Raw materials : Stabilizer, Disperser

-Ancillary materials : Release agent, Grease, Stain remover

Construction process stage (A4-A5)

This stage consists the transport of the product from production plant to the construction site.

It also includes the loss of material during construction. The additional needed production, transport and end-of-life of the lost material during construction is included.

The end-of-life of packaging material up to the end-of-waste state or disposal of final residues is also included.

End of life stage (C1-C4)

When the end of the life stage of the building is reached, the de-construction/demolition begins. This EPD includes de-construction/demolition (C1), the necessary transport (C2) from the demolition site to the sorting location and distance to final disposal. The end of life stage includes the final disposal to landfill (C4), incineration (C3) and needed recycling

3 Calculation rules

processes up to the end-of-waste point (C3). Loads and benefits of recycling, re-use and exported energy are part of module D.

The prescribed waste scenarios from the NMD Determination method v1.0 have been used for the various materials in the product.

Benefits and Loads beyond the system boundary (Module D)

This stage contains the potential loads and benefits of recycling and re-use of raw materials/products. The loads contain the needed recycling processes from end-of-waste-point up to the point-of-equivalence of the substituted primary raw material and a load for secondary material that will be lost at the end-of-life stage.

The loads and benefits of recycling and reuse are included in this module. The benefits are calculated based on the primary content and the primary equivalent.

In addition, the benefits of energy recovery are granted at this stage. The amount of avoid energy is based on the Lower Heating Values of the materials and the efficiencies of the incinerators as mentioned in the NMD Determination method v1.0 or EcoInvent 3.6 (2019).

3.6 ALLOCATION

Allocation is based on physical characteristics (mass). The production data was calculated according to the annual quantity by mass. The raw materials and energy were calculated according to this allocation key.

3.7 DATA COLLECTION & REFERENCE TIME PERIOD

All process-specific data was collected for the operating year 2021.

3.8 ESTIMATES AND ASSUMPTIONS

Almost all the datasets selected for the LCA refer to the RoW as the geographical reference, as there were no specific environmental profiles available.

Gold-Joint delivers its product to different countries, so the calculation of transport to construction site (A4) was done by taking the average distance, weighted by the proportion of product shipped to each country. For module A4, a data set for a non-specific truck and a transoceanic ship was used.

The following inputs have been placed under cut-off criteria (<1% of the total mass):

-Raw materials : Stabilizer, Disperser

-Ancillary materials : Release agent, Grease, Stain remover

A scaling method was used to calculate the LCA results for the different ACEGrid® products. The scaling was done on the basis of mass per square meter. As a result of scaling there are results for both the fixed and the scalable part of the scaling function. The fixed part means that this number is the same for each product in the product group and the scalable part is the part that depends on the mass per unit area of the product. In order to calculate the correct number of each environmental impact category for each of the products in the product group, the following calculation should be done:

[number fixed part]+([specific mass]*[number scalable part])

The inputs calcium carbonate and cardboard tube did not have a linear dependence on the specific mass, so the higher amount of product available was always considered for scaling to be as conservative as possible.

The linear dependence of energy consumption on specific mass has been calculated by taking into account the sum of production energy and yarn twisting energy (which is outsourced).

For C1 the method and amount of the generic data set 'Polyester weefsel' from chapter 22.46 Grondwapening en grondscheiding of the DuboCalc programme (database version NMD 1.8 - 5.01.14052018) was used. In this generic data set, 0.0013h work per m² of geotextile was assumed.

3.9 DATA QUALITY

All process-specific data was collected for the 2021 operating year and is therefore up-todate. The data is based on the annual average. In order to ensure comparability of the results, only consistent background data of the Ecoinvent database V3.6 was used in the LCA (e.g., records on energy, transportation, and supplies), which refers to reference year 2019. The database is regularly reviewed and thus complies with the requirements of EN 15804 (background data not older than 10 years). All consistent datasets contained in the Ecoinvent database are documented and can be viewed in the online Ecoinvent documentation. The primary data were provided by Gold-Joint. The life cycle was modelled with the R<THINK EPD App.

3.10 GUARANTEES OF ORIGIN

In this EPD, the local based approach was considered for the LCA, therefore no guaranties of origin (GO) are needed.

3 Calculation rules

3.12 SCALING

Parameter	Value
Scaling type	Linear
Description dimension	mass for each geogrid
Dimension	0.000
Scalable dimension	1.000
Unit dimension	kg/m²

4 Scenarios and additional technical information

4.1 TRANSPORT TO CONSTRUCTION SITE (A4)

For the transport from production place to assembly/user, the following scenario is assumed for module A4 of this EPD.

	Value and unit
Vehicle type used for transport	Transoceanic ship / Lorry unspecified
Fuel type and consumption of vehicle	
Distance	5383 km
Capacity utilisation (including empty returns)	
Bulk density of transported products	
Volume capacity utilisation factor	

4.2 ASSEMBLY (A5)

The following information describes the scenarios for flows entering the system and flows leaving the system at module A5.

FLOWS ENTERING THE SYSTEM

There are no significant environment impacts as a result of materials or energy used in the construction stage (A5).

FLOWS LEAVING THE SYSTEM

The following output flows leaving the system at module A5 are assumed.

Description	Value	Unit
Output materials as result of loss during construction	5	%
Output materials as result of waste processing of materials used for installation/assembly at the building site	0.000	kg
Output materials as result of waste processing of used packaging	0.126	kg

4.3 DE-CONSTRUCTION, DEMOLITION (C1)

The following information describes the scenario for demolition at end of life.

Description	Amount	Unit
Hydraulic excavator (average) [NMD]	0.001	hr

ACE Geosynthetics

4 Scenarios and additional technical information

4.4 TRANSPORT END-OF-LIFE (C2)

The following distances and transport conveyance are assumed for transportation during end of life for the different types of waste processing.

Waste Scenario	Transport conveyance	Not removed (stays in	Landfill	Incineration	Recycling	Re-use
		work) [km]	[km]	[km]	[km]	[km]
PE/PP soil reinforcement (geotextile and	Lorry (Truck), unspecified (default) market	0	100	150	FO	0
geogrid 54)	group for (GLO)	0	100	100	50	0

The transport conveyance(s) used in the scenario(s) for transport during end of life has the following characteristics.

	Value and unit
Vehicle type used for transport	Lorry (Truck), unspecified (default) market group for (GLO)
Fuel type and consumption of vehicle	not available
Capacity utilisation (including empty returns)	50 % (loaded up and return empty)
Bulk density of transported products	inapplicable
Volume capacity utilisation factor	1

4.5 END OF LIFE (C3, C4)

The scenario(s) assumed for end of life of the product are given in the following tables. First the assumed percentages per type of waste processing are displayed, followed by the assumed amounts.

Waste Scenario	Region	Not removed (stays in work) [%]	Landfill [%]	Incineration [%]	Recycling [%]	Re-use [%]
PE/PP soil reinforcement (geotextile and geogrid 54)	NL	25	0	70	5	0

Waste Scenario	Not removed (stays in work) [kg]	Landfill [kg]	Incineration [kg]	Recycling [kg]	Re-use [kg]
PE/PP soil reinforcement (geotextile and geogrid 54)	0.263	0.000	0.735	0.053	0.000
Total	0.263	0.000	0.735	0.053	0.000

4 Scenarios and additional technical information

4.6 BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY (D)

The presented Benefits and loads beyond the system boundary in this EPD are based on the following calculated Net output flows in kilograms and Energy recovery displayed in MJ Lower Heating Value.

Waste Scenario	Net output flow [kg]	Energy recovery [MJ]
PE/PP soil reinforcement (geotextile and geogrid 54)	0.050	13.684
Total	0.050	13.684

For the impact assessment, the characterization factors of the LCIA method EN 15804 +A2 Method v1.0 are used. Long-term emissions (>100 years) are not considered in the impact assessment. The results of the impact assessment are only relative statements that do not make any statements about end-points of the impact categories, exceedance of threshold values, safety margins or risks. The following tables show the results of the indicators of the impact assessment, of the use of resources as well as of waste and other output flows.

5.1 ENVIRONMENTAL IMPACT INDICATORS PER SQUARE METER (FIXED PART)

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
AP	mol H+ eqv.	1.31E-3	-2.72E-5	4.66E-4	1.68E-4	1.34E-4	7.12E-4	2.15E-7	2.17E-6	5.92E-8	2.75E-6
GWP-total	kg CO2 eqv.	2.07E-1	-4.58E-4	7.92E-2	1.43E-2	1.71E-1	6.81E-2	3.72E-5	4.81E-3	9.50E-5	1.39E-2
GWP-b	kg CO2 eqv.	6.12E-4	4.92E-7	-1.59E-3	8.87E-6	1.48E-1	1.89E-5	1.71E-8	6.96E-7	7.31E-8	1.44E-6
GWP-f	kg CO2 eqv.	2.06E-1	-4.58E-4	8.03E-2	1.43E-2	2.31E-2	6.81E-2	3.71E-5	4.81E-3	9.49E-5	1.40E-2
GWP-luluc	kg CO2 eqv.	5.11E-4	-4.67E-7	5.15E-4	5.93E-6	5.38E-5	5.37E-6	1.36E-8	3.91E-7	3.35E-9	-3.60E-5
EP-m	kg N eqv.	1.80E-4	-6.41E-6	1.26E-4	4.17E-5	3.11E-5	3.14E-4	7.59E-8	5.92E-7	3.59E-8	4.59E-7
EP-fw	kg P eqv.	2.19E-4	8.91E-10	1.75E-5	1.69E-7	1.19E-5	2.48E-7	3.75E-10	1.45E-8	1.22E-10	-2.25E-7
EP-T	mol N eqv.	2.00E-3	-7.13E-5	1.24E-3	4.65E-4	3.33E-4	3.45E-3	8.37E-7	6.60E-6	2.18E-7	6.60E-6
ODP	kg CFC 11	2.84E-8	-8.26E-11	7.03E-9	3.05E-9		1/75 0	8.20E-12	1.47E-10	2.10E-12	1.67E-9
ODP	eqv.	2.04E-0	-0.20E-11	7.03E-9	3.05E-9	3.00E-9	1.47E-8	0.20E-12	1.47 E-10	2.10E-12	1.07E-9
POCP	kg NMVOC	6.80E-4	-1.82E-5	2.97E-4	1.27E-4	1.01E-4	9.49E-4	2.39E-7	1.77E-6	8.33E-8	-3.25E-6
POCP	eqv.	0.00E-4	-1.02E-3	2.976-4	1.276-4	1.01E-4	9.49E-4	2.39E-7	1.77 E-10	0.33E-0	-3.25E-0
ADP-f	MJ	2.60E+0	-4.79E-3	1.13E+0	2.12E-1	2.63E-1	9.37E-1	5.60E-4	3.75E-3	1.61E-4	2.30E-1
ADP-mm	kg Sb-eqv.	2.00E-6	4.86E-9	9.34E-7	2.50E-7	3.25E-7	1.04E-7	9.41E-10	6.17E-9	7.26E-11	-2.94E-8
	m3 world	1025 1			0.205 (7705 7	1205 7	2005 0			
WDP	eqv.	1.02E-1	7.76E-6	2.61E-2	9.29E-4	7.39E-3	1.26E-3	2.00E-6	2.45E-4	6.88E-6	4.78E-4

CORE ENVIRONMENTAL IMPACT INDICATORS EN15804+A2

AP=Acidification (AP) | GWP-total=Global warming potential (GWP-total) | GWP-b=Global warming potential - Biogenic (GWP-b) | GWP-f=Global warming potential - Fossil (GWP-f) | GWP-f=Global warming potential - Land use and land use change (GWP-luluc) | EP-m=Eutrophication marine (EP-m) | EP-fw=Eutrophication, freshwater (EP-fw) | EP-T=Eutrophication, terrestrial (EP-T) | ODP=Ozone depletion (ODP) | POCP=Photochemical ozone formation - human health (POCP) | ADP-f=Resource use, fossils (ADP-f) | ADP-mm=Resource use, minerals and metals (ADP-mm) | WDP=Water use (WDP)

ADDITIONAL ENVIRONMENTAL IMPACT INDICATORS EN15084+A2

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
ETP-fw	CTUe	1.05E+1	-1.36E-3	7.98E+0	1.74E-1	1.11E+0	5.65E-1	4.99E-4	6.04E-2	1.71E-4	-8.09E-3
PM	disease incidence	2.18E-8	1.33E-11	7.00E-9	1.01E-9	2.06E-9	1.89E-8	3.34E-12	1.76E-11	1.12E-12	-8.36E-11
HTP-c	CTUh	9.45E-10	-3.19E-13	1.03E-10	5.72E-12	6.47E-11	1.97E-11	1.62E-14	9.20E-13	4.48E-15	-5.27E-13
HTP-nc	CTUh	1.00E-7	7.48E-13	7.26E-9	1.77E-10	5.53E-9	4.85E-10	5.46E-13	1.91E-11	1.11E-13	-2.50E-11
IR	kBq U235 eqv.	8.75E-3	-2.12E-5	2.62E-3	9.03E-4	9.06E-4	4.02E-3	2.35E-6	1.53E-5	6.29E-7	-2.65E-5
SQP	Pt	5.42E-1	4.46E-3	2.83E+0	1.35E-1	2.05E-1	1.20E-1	4.86E-4	1.38E-3	3.80E-4	-4.52E+0

ETP-fw=Ecotoxicity, freshwater (ETP-fw) | PM=Particulate Matter (PM) | HTP-c=Human toxicity, cancer (HTP-c) | HTP-nc=Human toxicity, non-cancer (HTP-nc) | IR=Ionising radiation, human health (IR) | SQP=Land use (SQP)

CLASSIFICATION OF DISCLAIMERS TO THE DECLARATION OF CORE AND ADDITIONAL ENVIRONMENTAL IMPACT INDICATORS

ILCD classification	Indicator	Disclaimer
	Global warming potential (GWP)	None
ILCD type / level 1	Depletion potential of the stratospheric ozone layer (ODP)	None
	Potential incidence of disease due to PM emissions (PM)	None
	AAcidification potential, Accumulated Exceedance (AP)	None
	Eutrophication potential, Fraction of nutrients reaching freshwater end compartment	Nere
	(EP-freshwater)	None
	Eutrophication potential, Fraction of nutrients reaching marine end compartment	Nere
ILCD type / level 2	(EP-marine)	None
	Eutrophication potential, Accumulated Exceedance (EP-terrestrial)	None
	Formation potential of tropospheric ozone (POCP)	None
	Potential Human exposure efficiency relative to U235 (IRP)	1
ILCD type / level 3	Abiotic depletion potential for non-fossil resources (ADP-minerals&metals)	2
	Abiotic depletion potential for fossil resources (ADP-fossil)	2
	Water (user) deprivation potential, deprivation-weighted water consumption (WDP)	2
	Potential Comparative Toxic Unit for ecosystems (ETP-fw)	2

ILCD classification	Indicator	Disclaimer
	Potential Comparative Toxic Unit for humans (HTP-c)	2
	Potential Comparative Toxic Unit for humans (HTP-nc)	2
	Potential Soil quality index (SQP)	2
Disclaimer 1 – This impact category deals mainly wi	ith the eventual impact of low dose ionizing radiation on human health c	of the nuclear fuel cycle. It does not consider effects due to possible
nuclear accidents, occupational exposure nor due t	o radioactive waste disposal in underground facilities. Potential ionizing r	radiation from the soil, from radon and from some construction
materials is also not measured by this indicator.		

Disclaimer 2 - The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

5.2 ENVIRONMENTAL IMPACT INDICATORS PER SQUARE METER (SCALABLE PART)

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
AP	mol H+ eqv.	1.17E-2	4.56E-4	1.50E-3	1.94E-3	8.76E-4	0.00E+0	8.40E-5	8.45E-4	2.31E-5	-9.45E-4
GWP-total	kg CO2 eqv.	2.15E+0	1.60E-2	3.81E-1	1.66E-1	3.28E-1	0.00E+0	1.45E-2	1.87E+0	3.70E-2	-7.88E-1
GWP-b	kg CO2 eqv.	4.55E-3	-2.97E-6	-1.03E-4	1.02E-4	2.64E-4	0.00E+0	6.68E-6	2.71E-4	2.85E-5	-7.44E-4
GWP-f	kg CO2 eqv.	2.14E+0	1.60E-2	3.81E-1	1.65E-1	3.27E-1	0.00E+0	1.45E-2	1.87E+0	3.70E-2	-7.87E-1
GWP-luluc	kg CO2 eqv.	3.15E-3	1.03E-5	2.33E-4	6.85E-5	1.89E-4	0.00E+0	5.30E-6	1.52E-4	1.31E-6	-5.28E-5
EP-m	kg N eqv.	1.79E-3	1.13E-4	2.34E-4	4.82E-4	1.59E-4	0.00E+0	2.96E-5	2.31E-4	1.40E-5	-2.34E-4
EP-fw	kg P eqv.	1.16E-3	8.05E-8	7.71E-5	1.95E-6	6.23E-5	0.00E+0	1.46E-7	5.65E-6	4.74E-8	-2.59E-6
EP-T	mol N eqv.	1.97E-2	1.26E-3	2.59E-3	5.37E-3	1.75E-3	0.00E+0	3.26E-4	2.57E-3	8.49E-5	-2.57E-3
	kg CFC 11	2025 7	7 275 0	1005.0	7 525 0	1025.0	0.005+0	7005.0		0.105.10	01/5 0
ODP	eqv.	2.02E-7	3.27E-9	1.08E-8	3.52E-8	1.92E-8	0.00E+0	3.20E-9	5.73E-8	8.18E-10	-9.14E-8
DOCD	kg NMVOC		7 205 /	01/5 /			0.005+0	0.715 5			0.075 /
POCP	eqv.	6.92E-3	3.28E-4	9.14E-4	1.47E-3	5.65E-4	0.00E+0	9.31E-5	6.91E-4	3.25E-5	-9.67E-4

CORE ENVIRONMENTAL IMPACT INDICATORS EN15804+A2

AP=Acidification (AP) | GWP-total=Global warming potential (GWP-total) | GWP-b=Global warming potential - Biogenic (GWP-b) | GWP-f=Global warming potential - Fossil (GWP-f) | GWP-f=Global warming potential - Land use and land use change (GWP-luluc) | EP-m=Eutrophication marine (EP-m) | EP-fw=Eutrophication, freshwater (EP-fw) | EP-T=Eutrophication, terrestrial (EP-T) | ODP=Ozone depletion (ODP) | POCP=Photochemical ozone formation - human health (POCP) | ADP-f=Resource use, fossils (ADP-f) | ADP-mm=Resource use, minerals and metals (ADP-mm) | WDP=Water use (WDP)

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
ADP-f	MJ	3.73E+1	2.11E-1	5.69E+0	2.45E+0	2.50E+0	0.00E+0	2.18E-1	1.46E+0	6.26E-2	-1.52E+1
ADP-mm	kg Sb-eqv.	2.85E-5	1.63E-7	2.60E-6	2.89E-6	2.00E-6	0.00E+0	3.67E-7	2.40E-6	2.83E-8	-1.16E-6
WDP	m3 world eqv.	1.02E+0	3.86E-4	9.23E-2	1.07E-2	6.71E-2	0.00E+0	7.81E-4	9.56E-2	2.68E-3	-1.37E-1

AP=Acidification (AP) | GWP-total=Global warming potential (GWP-total) | GWP-b=Global warming potential - Biogenic (GWP-b) | GWP-f=Global warming potential - Fossil (GWP-f) | GWP-f=Global warming potential - Land use and land use change (GWP-luluc) | EP-m=Eutrophication marine (EP-m) | EP-fw=Eutrophication, freshwater (EP-fw) | EP-T=Eutrophication, terrestrial (EP-T) | ODP=Ozone depletion (ODP) | POCP=Photochemical ozone formation - human health (POCP) | ADP-f=Resource use, fossils (ADP-f) | ADP-mm=Resource use, minerals and metals (ADP-mm) | WDP=Water use (WDP)

ADDITIONAL ENVIRONMENTAL IMPACT INDICATORS EN15084+A2

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
ETP-fw	CTUe	7.16E+1	1.45E-1	7.91E+0	2.02E+0	6.46E+0	0.00E+0	1.95E-1	2.36E+1	6.66E-2	-1.27E+0
PM	disease incidence	1.61E-7	6.39E-10	1.42E-8	1.17E-8	1.02E-8	0.00E+0	1.30E-9	6.85E-9	4.35E-10	-4.80E-9
HTP-c	CTUh	5.74E-9	8.76E-12	4.12E-10	6.60E-11	3.48E-10	0.00E+0	6.32E-12	3.59E-10	1.75E-12	-7.15E-11
HTP-nc	CTUh	5.31E-7	1.25E-10	3.48E-8	2.04E-9	2.92E-8	0.00E+0	2.13E-10	7.45E-9	4.33E-11	-1.28E-9
IR	kBq U235 eqv.	6.91E-2	9.00E-4	8.65E-3	1.04E-2	5.20E-3	0.00E+0	9.15E-4	5.98E-3	2.45E-4	-6.22E-3
SQP	Pt	5.32E+0	5.56E-2	5.80E-1	1.56E+0	4.59E-1	0.00E+0	1.89E-1	5.38E-1	1.48E-1	-2.90E-1

ETP-fw=Ecotoxicity, freshwater (ETP-fw) | PM=Particulate Matter (PM) | HTP-c=Human toxicity, cancer (HTP-c) | HTP-nc=Human toxicity, non-cancer (HTP-nc) | IR=Ionising radiation, human health (IR) | SQP=Land use (SQP)

CLASSIFICATION OF DISCLAIMERS TO THE DECLARATION OF CORE AND ADDITIONAL ENVIRONMENTAL IMPACT INDICATORS

ILCD classification	Indicator	Disclaimer
	Global warming potential (GWP)	None
ILCD type / level 1	Depletion potential of the stratospheric ozone layer (ODP)	None
	Potential incidence of disease due to PM emissions (PM)	None
ILCD type / level 2	AAcidification potential, Accumulated Exceedance (AP)	None
		None

ILCD classification	Indicator	Disclaimer
	Eutrophication potential, Fraction of nutrients reaching freshwater end compartment	
	(EP-freshwater)	
	Eutrophication potential, Fraction of nutrients reaching marine end compartment	News
	(EP-marine)	None
	Eutrophication potential, Accumulated Exceedance (EP-terrestrial)	None
	Formation potential of tropospheric ozone (POCP)	None
	Potential Human exposure efficiency relative to U235 (IRP)	1
	Abiotic depletion potential for non-fossil resources (ADP-minerals&metals)	2
	Abiotic depletion potential for fossil resources (ADP-fossil)	2
	Water (user) deprivation potential, deprivation-weighted water consumption (WDP)	2
ILCD type / level 3	Potential Comparative Toxic Unit for ecosystems (ETP-fw)	2
	Potential Comparative Toxic Unit for humans (HTP-c)	2
	Potential Comparative Toxic Unit for humans (HTP-nc)	2
	Potential Soil quality index (SQP)	2

Disclaimer 1 – This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

5.3 ENVIRONMENTAL IMPACT INDICATORS PER SQUARE METER (FIXED PART)

PARAMETERS DESCRIBING RESOURCE USE

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
PERE	МЈ	2.17E-1	8.03E-6	5.47E-1	3.16E-3	4.09E-2	5.07E-3	7.01E-6	3.79E-4	2.84E-6	-7.79E-1
PERM	МЈ	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
PERT	МЈ	2.17E-1	8.03E-6	5.47E-1	3.16E-3	4.09E-2	5.07E-3	7.01E-6	3.79E-4	2.84E-6	-7.79E-1
PENRE	МЈ	3.32E+0	-5.08E-3	2.42E-2	2.25E-1	2.47E-1	9.95E-1	5.95E-4	3.98E-3	1.71E-4	2.65E-1
PENRM	МЈ	-5.67E-1	0.00E+0	1.20E+0	0.00E+0	3.27E-2	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-8.39E-3
PENRT	МЈ	2.75E+0	-5.08E-3	1.22E+0	2.25E-1	2.80E-1	9.95E-1	5.95E-4	3.98E-3	1.71E-4	2.56E-1
SM	Kg	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
RSF	МЈ	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
NRSF	МЈ	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
FW	M3	2.82E-3	2.37E-7	8.99E-4	3.04E-5	2.23E-4	4.83E-5	6.82E-8	7.21E-6	1.68E-7	2.77E-6

PERE=renewable primary energy ex. raw materials | PERM=renewable primary energy used as raw materials | PERT=renewable primary energy total | PENRE=non-renewable primary energy ex. raw materials | PENRM=non-renewable primary energy used as raw materials | PENRT=non-renewable primary energy total | SM=use of secondary material | RSF=use of renewable secondary fuels | RSF=use of net fresh water

OTHER ENVIRONMENTAL INFORMATION DESCRIBING WASTE CATEGORIES

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
HWD	Kg	2.13E-7	6.92E-9	1.17E-6	4.20E-7	2.69E-7	2.55E-6	1.42E-9	7.14E-9	2.44E-10	2.42E-7
NHWD	Kg	2.09E-2	4.15E-4	1.54E-2	9.20E-3	4.66E-3	1.11E-3	3.55E-5	9.24E-5	6.42E-4	-6.43E-4
RWD	Kg	6.07E-6	-3.60E-8	2.62E-6	1.39E-6	9.07E-7	6.51E-6	3.68E-9	1.35E-8	9.55E-10	-3.41E-8

HWD=hazardous waste disposed | NHWD=non hazardous waste disposed | RWD=radioactive waste disposed

ENVIRONMENTAL INFORMATION DESCRIBING OUTPUT FLOWS

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
CRU	Kg	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MFR	Kg	0.00E+0	0.00E+0	2.45E-3	0.00E+0	6.81E-2	0.00E+0	0.00E+0	1.28E-4	0.00E+0	0.00E+0
MER	Kg	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EET	MJ	0.00E+0	0.00E+0	-1.56E-2	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-1.19E-1
EEE	МЈ	0.00E+0	0.00E+0	-9.03E-3	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-6.90E-2

CRU=Components for re-use | MFR=Materials for recycling | MER=Materials for energy recovery | EET=Exported Energy Thermic | EEE=Exported Energy Electric

5.4 ENVIRONMENTAL IMPACT INDICATORS PER SQUARE METER (SCALABLE PART)

PARAMETERS DESCRIBING RESOURCE USE

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
PERE	MJ	1.73E+0	1.63E-3	1.90E-1	3.65E-2	1.14E-1	0.00E+0	2.73E-3	1.48E-1	1.11E-3	-8.88E-2
PERM	MJ	0.00E+0									
PERT	MJ	1.73E+0	1.63E-3	1.90E-1	3.65E-2	1.14E-1	0.00E+0	2.73E-3	1.48E-1	1.11E-3	-8.88E-2
PENRE	MJ	1.98E+1	2.24E-1	3.30E+0	2.60E+0	1.52E+0	0.00E+0	2.32E-1	1.55E+0	6.66E-2	-1.44E+1
PENRM	MJ	2.01E+1	0.00E+0	2.75E+0	0.00E+0	1.15E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-2.29E+0
PENRT	MJ	3.99E+1	2.24E-1	6.05E+0	2.60E+0	2.67E+0	0.00E+0	2.32E-1	1.55E+0	6.66E-2	-1.67E+1
SM	Kg	0.00E+0									
RSF	MJ	0.00E+0									
NRSF	MJ	0.00E+0									
FW	M3	2.71E-2	1.36E-5	2.83E-3	3.52E-4	1.81E-3	0.00E+0	2.66E-5	2.81E-3	6.53E-5	-1.97E-3

PERE=renewable primary energy ex. raw materials | PERM=renewable primary energy used as raw materials | PERT=renewable primary energy total | PENRE=non-renewable primary energy used as raw materials | PENRT=non-renewable primary energy total | SM=use of secondary material | RSF=use of renewable secondary fuels | NRSF=use of non-renewable secondary fuels | FW=use of net fresh water

OTHER ENVIRONMENTAL INFORMATION DESCRIBING WASTE CATEGORIES

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
HWD	Kg	4.07E-5	2.53E-7	2.64E-6	4.85E-6	2.81E-6	0.00E+0	5.53E-7	2.78E-6	9.52E-8	-1.48E-5
NHWD	Kg	2.08E-1	2.76E-3	3.56E-2	1.06E-1	3.92E-2	0.00E+0	1.39E-2	3.60E-2	2.50E-1	-8.04E-3
RWD	Kg	5.60E-5	1.45E-6	7.29E-6	1.60E-5	4.77E-6	0.00E+0	1.43E-6	5.25E-6	3.72E-7	-7.72E-6

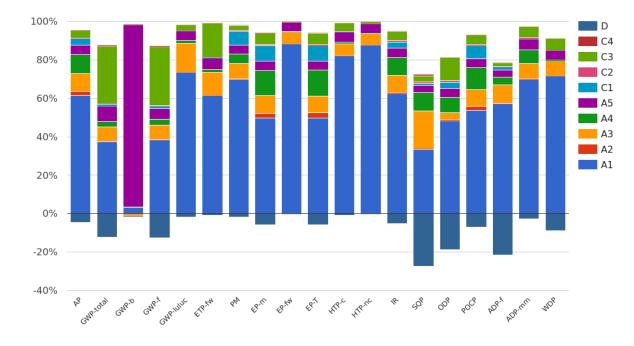
HWD=hazardous waste disposed | NHWD=non hazardous waste disposed | RWD=radioactive waste disposed

ENVIRONMENTAL INFORMATION DESCRIBING OUTPUT FLOWS

Abbreviation	Unit	Al	A2	A3	A4	A5	C1	C2	C3	C4	D
CRU	Kg	0.00E+0									
MFR	Kg	0.00E+0	0.00E+0	1.32E-2	0.00E+0	5.17E-3	0.00E+0	0.00E+0	4.99E-2	0.00E+0	0.00E+0
MER	Kg	0.00E+0									
EET	MJ	0.00E+0	0.00E+0	2.75E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	5.05E+0
EEE	MJ	0.00E+0	0.00E+0	1.60E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	2.93E+0

CRU=Components for re-use | MFR=Materials for recycling | MER=Materials for energy recovery | EET=Exported Energy Thermic | EEE=Exported Energy Electric

5.5 INFORMATION ON BIOGENIC CARBON CONTENT PER SQUARE METER


BIOGENIC CARBON CONTENT

The following Information describes the biogenic carbon content in (the main parts of) the product at the factory gate per square meter:

Biogenic carbon content	Amount	Unit
Biogenic carbon content in the product	0	kg C
Biogenic carbon content in accompanying packaging	0	kg C

6 Interpretation of results

As shown in the figure below, raw material supply (Al) dominates in most environmental core indicators. In some environmental core indicators waste processing (C3) and production process (A3) have a great impact. The highest influence on the Global Warming Potential (GWP-total) has raw material supply (Al), followed by waste processing (C3).

ACE Geosynthetics

ACEGrid® | ReTHiNK-58054

7 References

ISO 14040

ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework; EN ISO 14040:2006

ISO 14044

ISO 14044:2006-10, Environmental management - Life cycle assessment - Requirements and guidelines; EN ISO 14040:2006

ISO 14025

ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804+A2

EN 15804+A2: 2019: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

PCR A: General Program Category Rules for Construction Products from the EPD program Kiwa-Ecobility Experts, 2022-02-14

PCR B: Product Category Rules (PCR) from the Kiwa-Ecobility Experts (Kiwa-EE) – Specific Product Category Rules: Geosynthetic products, 2023-07-21

8 Contact information

Publisher	Operator	Owner of declaration
kiwa Ecobility Experts	Ecobility Experts	ACE Geosynthetics
Kiwa-Ecobility Experts	Kiwa-Ecobility Experts	Gold-Joint Industry Co., Ltd.
Voltastraße 5 13355 Berlin, DE	Voltastraße 5 13355 Berlin, DE	No.33, Jing 3 Rd. Wuqi Dist. 43541 Taichung City, Taiwan (R.O.C.), TW
E-mail:	E-mail:	E-mail:
DE.Ecobility.Experts@kiwa.com Website:	DE.Ecobility.Experts@kiwa.com Website:	marketing@geoace.com Website:
	https://www.kiwa.com/de/en/themes/ecobility-experts/ecobility- experts-epd-program/	

