

Environmental Product Declaration

as per ISO 14025 and EN 15804

Owner of the declaration:	RIVA Thy Marcinelle S.A.
Publisher:	Kiwa-Ecobility Experts
Programme operator:	Kiwa- Ecobility Experts
Registration number:	EPD-RIVA Thy Marcinelle-299-EN
Issue date:	20.03.2023
Valid to:	20.03.2028

Hot Rolled Concrete Reinforcing Coils

This EPD is based on the LCA of Hot Rolled Concrete Reinforcing Coils from RIVA Thy Marcinelle S.A., which is produced in the steel mill and stretching machines of the plant location Charleroi.

1. General information

RIVA Thy Marcinelle S.A.

Program operator

Kiwa – Ecobility Experts Voltastr. 5 13355 Berlin Germany

Registration number

EPD-RIVA Thy Marcinelle-299-EN

Issue date

20.03.2023

Scope

This EPD is based on the LCA of the Hot Rolled Concrete Reinforcing Coils from RIVA Thy Marcinelle S.A., which is produced in the steel mill and the stretching machines of the plant location Charleroi.

The type of the EPD is "from cradle to gate with options", regarding the moduls C1 to C4 and modul D.

The owner of the declaration shall be liable for the underlying information and evidence. Kiwa – Ecobility Experts shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Hot Rolled Concrete Reinforcing Coils

Owner of the declaration

RIVA Thy Marcinelle S.A. Rue de L'Acier 1 B-6000 Charleroi Belgium

Declared product / declared unit

1 kg Hot Rolled Concrete Reinforcing Coils

Valid to

20.03.2028

Product category rules

PCR B for construction steel products (construction steel products; draft; 2020-03-13).

Verification

The European standard EN15804:2012+ A2:2019 serves as the core PCR.

Independent verification of the declaration and data according to ISO 14025

□internally

⊠externally

Frank Huppertz (Head of Kiwa – Ecobility Experts)

Anne Kees Jeeninga - Advieslab V.o.f. (Third party verifier)

4. 40%

Prof. Dr. Frank Heimbecher (Chairman of the independent expert committee - Ecobility Experts)

2. Product

2.1 Product description

The product to be declared is an average product for hot rolled concrete reinforcing coils with a range of diameters from 8mm to 16mm. The product to be declared is Hot Rolled Concrete Reinforcing Coils from RIVA Thy Marcinelle S.A., which is produced in the steel mill and the stretching machines of the plant location "Carleroi" located at Rue de L'Acier 1, B-6000 Charleroi, Belgium.

2.2 Application

The Hot Rolled Concrete Reinforcing Coils is used for the reinforcement of concrete.

2.3 Technical data

The following technical data was provided by RIVA Thy S.A..

Table 1: Technical data

Parameter	Value
Steel Grade	B500B
Yield strength	500 to 550 MPa
Ratio R _m /R _e	at least 1.08
Way of production	EAF
Standard/Norm	EN 10080 + all national standards for each European country
Range of diameters	8mm to 16mm

2.4 Manufacturing

Steel billets are semi-finished products with a square cross-section and rounded edges produced by continuous casting. They serve as starting material for the hot rolling process or are processed directly into forgings.

Wire rods are produced by hot rolling steel billets on special continuous rolling mills, it is a long product formed into coils and serves as semi-finished product.

Stretched wire coils is produced from hot-rolled and ribbed wire coils by a subsequent cold stretching process. After the stretching process, the wire is coiled into coils, which are processed into bars and stirrups on straightening, bending and cutting lines.

2.5 Raw materials

Table 2 lists the raw materials for the steel billets from which the Hot Rolled Concrete Reinforcing Coils is made, with the average shares in mass percent. To respect the commercial secrets, the values are given in intervals that represents the distribution of the shares of the raw materials.

Table 2: Raw materials and shares in mass percent

Material	Share in m%
Ferrosilicon	0-2
Limestone	2-4
Manganese for Siliconmanganese	0-2
Anthracite	1-3
Scrap	93-96
Silicon for Silicomanganese	0-2

There is no biogenic carbon in the products. The product does not contain substances from the "Candidate list of substances of very high concern for authorisation" (SVHC).

2.6 Reference service life

Since the service life of wire rods is not considered, there is no need to specify a reference service life.

3. LCA: Calculation rules

3.1 Declared unit

According to PCR B for construction steel products (draft; 2020-03-13), the declared unit is 1 kg of Hot Rolled Concrete Reinforcing Coils.

Table 3: Declared unit

Parameter	Value	Unit	
Declared unit	1	kg	

For the calculation of potential environmental impacts, process-specific data were collected for the product under consideration. All the energy and materials required for the production process were determined, as were the data for calculating the auxiliary materials and co-products.

This is an EPD for Hot Rolled Concrete Reinforcing Coils, which were produced at the plant location Charleroi. The range of diamters is from 8mm to 16mm.

3.2 System boundary

In this life cycle assessment according to EN 15804+A2, the following phases of the product life cycle are considered:

A1: Extraction and processing of raw materials and processing of secondary materials used as input (e.g. recycling processes)

- A2: Transport to Manufacturing
- A3: Manufacturing
- C1: Demolition
- C2: Transport to waste treatment
- C3: Waste treatment for reuse, recovery and/or recycling
- C4: Disposal

D: Reuse-, Recovery-, Recycling- potentials, indicated as net flows and benefits

Therefore, the type of this average EPD is "from cradle to gate with options".

For the declared life cycle phases, all inputs (raw materials, precursors, energy and auxiliary materials) as well as the waste generated were considered.

Figure 1 shows the simplified process flow diagram for the regarded steel product Hot Rolled Concrete Reinforcing Coils which are produced at the plant location Charleroi of RIVA Thy Marcinelle S.A..

Figure 1: Simplified process flow diagram

3.3 Estimates and assumptions

The waste scenarios for production and the waste scenarios for the end-of-life phase were created on the basis of a detailed query. The background data for modelling the fall scenarios were provided by RIVA Thy Marcinelle S.A. and are explained and presented in the background report.

3.4 Period under review

All product- and process-specific data were collected for the 2021 operating year and are thus up-todate.

3.5 Cut-off criteria

For the process modules A1 to A3, all process-specific data were collected. Potential environmental impacts were assigned to the material flows based on the Ecoinvent database V3.6 of 2019. All flows contributing to more than 1 percent of the total mass, energy, or environmental impacts of the system were considered in the LCA. It can be assumed that the neglected processes would have contributed less than 5 percent to the considered impact categories.

3.6 Data quality

To ensure the comparability of the results, only consistent background data from the Ecoinvent database V3.6 of 2019 were used in the LCA (e.g. data sets on energy, transports, auxiliary and operating materials). The database is regularly checked and thus complies with the requirements of EN 15804 (background data not older than 10 years). Almost all consistent data sets contained in the Ecoinvent database V3.6 of 2019 are documented and can be viewed in the online documentation. The data refer to the annual average of inputs (energy, inputs, etc.) consumed during the operating phase 01/2021 -12/2021 and were converted to reference flows (input / output per declared unit).

The general rule was followed that specific data from specific production processes or average data derived from specific processes must have priority in the calculation of an LCA. Data for processes over which the manufacturer has no control were assigned generic data.

The calculation of the LCA was performed using the online EPD tool "R<THiNK" from Nibe.

3.7 Allocation

The allocation regarding production waste is explained in the project report of this EPD. There are no multi-functional processes to be considered. Specific information on allocations within the background data can be found in the Ecoinvent database V3.6 document of 2019.

3.8 Comparability

In principle, a comparison or assessment of the environmental impacts of different products is only possible if they have been prepared in accordance with EN 15804. For the evaluation of the comparability, the following aspects have to be considered in particular: PCR used , functional or declared unit, geographical reference, definition of the system boundary, declared modules, data selection (primary or secondary data, background database, data quality), scenarios used for use and disposal phases, and the life cycle inventory (data collection, calculation methods, allocations, validity period). PCRs and general program instructions of different EPDs programs may differ. A comparability needs to be evaluated. For further guidance see EN 15804+A2 (5.3 Comparability of EPD for construction products) and ISO 14025 (6.7.2 Requirements for comparability). Reference Service Life (RSL)

The lifetime of monopiles will be limited by the service life of the construction. Under these circumstances, no RSL according to the relevant ISO standards and EN 15804 can be declared.

3.9 Data collection

For the data collection, ISO 14044 section 4.3.2 was considered.

The data collection was implemented by using an Excel data collection template provided by Kiwa GmbH. The data collected was checked by Kiwa GmbH, for example by checking the extent to which the data for the different production processes matched to each other. In this way, some errors (e.g. unit errors, language barriors) could still be corrected in cooperation with RIVA Thy Marcinelle S.A.. The annual input and output values (raw materials and energy, auxiliary materials, components of waste etc.) were related to the declared unit of one kilogram of steel product with the aid of corresponding calculations.

3.10 Calculation methods

The calculation procedures described in ISO 14044 Section 4.3.3 were used for the life cycle assessment. The evaluation is based on the phases according to the system boundaries and the processes contained.

4. LCA: Scenarios and additional technical information

The assigned waste scenarios are based on the "Natio-nale Milieudatabase" (NMD), the national environmental database of the Netherlands. This is due to the fact that the used online EPD tool "R<THINK" was developed by Nibe in the Netherlands. The waste scenario used for reinforcing steel has the NMD ID 72. Further informarmation about the waste scenarios are presented in the backround report.

Table 5: C2 – Transport End of Life

Waste Scenario	Waste Treatment	Transport Profile	Transport ditance in km
	Landfill	Lorry (Truck), unspecified (default)	100
ID 72)	Incineration	Lorry (Truck), unspecified (default)	150
	Recycling	Lorry (Truck), unspecified (default)	50

Table 6: C- Shares of waste treatment

Waste Scenario	Shares of waste treatment [%]					
	Landfill	Recycling	Incineration			
Steel, reinforcement (NMD ID 72)	5	95	-			

Table 7: D – Used Environmental Profile for benefits

Waste Scenario	Used Environmental Profile for benefits					
	Landfill	Recycling	Incineration			
Steel, reinforcement (NMD ID 72)	_	Benefits module D World Steel method (Steel pro- duction, electric, low-alloyed - Steel production, con- verter, unalloyed)	-			

5. LCA: Results

The following tables show the results of the life cycle assessment, more precisely for the environmental impact indicators, resource consumption, output flows and waste categories. The results presented refer to the declared unit of 1 kg of Hot Rolled Concrete Reinforcing Coils.

The results of the environmental impact indicators ETP fw, HTP-c, HTP-nc, SQP, ADP-f, ADP-mm and WDP must be used with caution, as the uncertainties in these results are high or as there is limited experience with the indicator.

Disclaimer on IR: This impact category mainly addresses the potential effect of low dose ionizing radiation on human health in the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents and occupational exposures, nor does it consider radioactive waste disposal in underground facilities. Potential ionizing radiation from soil, radon, and some building materials is also not measured by this indicator.

Table 8: Overview of the considered information modules showing all phases of the building life cycle according to DIN EN 15804 (X = module declared)

Descrip	Description of the system boundary (X = Included in LCA)													
Pro	duct sta	ige	Constr proces	ruction is stage	Use stage End of life stage				Benefits and loads beyond the system bounda- ries					
Raw material supply	Transport	Manufacturing	Transport from manu-facturer to place of use	Construction-instal- lation process	Use	Maintenance	Repair	Replacement	Refurbishmen	De-construction / demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	C1	C2	С3	C4	D
х	х	х	-	-	-	-	-	-	-	х	х	х	х	x

	Table 9: Results	of the LCA -	Environmental	impact	categories
--	------------------	--------------	---------------	--------	------------

Results of the LCA – Environmental impact categories									
Impact	Unit	A1	A2	A3	C1	C2	C3	C4	D
category									
AP	mol H+ eqv.	4,88E-04	8,99E-05	6,76E-04	0,00E+00	4,95E-05	0,00E+00	4,93E-06	2,41E-04
GWP-total	kg CO2 eqv.	1,04E-01	1,24E-02	2,49E-01	0,00E+00	8,55E-03	0,00E+00	5,31E-04	6,18E-02
GWP-b	kg CO2 eqv.	1,97E-03	8,65E-06	1,67E-03	0,00E+00	3,94E-06	0,00E+00	2,12E-06	-6,50E-04
GWP-f	kg CO2 eqv.	1,02E-01	1,23E-02	2,47E-01	0,00E+00	8,54E-03	0,00E+00	5,29E-04	6,25E-02
GWP-luluc	kg CO2 eqv.	1,33E-04	1,33E-05	1,14E-03	0,00E+00	3,13E-06	0,00E+00	1,42E-07	-4,61E-05
ETP-fw	CTUe	2,38E+00	1,58E-01	3,38E+00	0,00E+00	1,15E-01	0,00E+00	2,64E-01	2,09E+00
DM	disease inci-								
PIVI	dence	2,32E-08	8,17E-10	8,91E-09	0,00E+00	7,68E-10	0,00E+00	9,45E-11	3,62E-09
EP-m	kg N eqv.	1,05E-04	3,50E-05	1,87E-04	0,00E+00	1,75E-05	0,00E+00	1,69E-06	4,47E-05
EP-fw	kg PO4 eqv.	6,05E-06	1,30E-07	6,04E-06	0,00E+00	8,61E-08	0,00E+00	2,45E-08	2,21E-06
EP-T	mol N eqv.	1,20E-03	3,86E-04	2,13E-03	0,00E+00	1,92E-04	0,00E+00	1,86E-05	5,22E-04
HTP-c	CTUh	1,06E-09	5,87E-12	3,83E-09	0,00E+00	3,72E-12	0,00E+00	2,35E-09	8,08E-12
HTP-nc	CTUh	9,62E-10	1,54E-10	2,98E-07	0,00E+00	1,26E-10	0,00E+00	1,18E-11	-1,21E-08
ID	kBq U235								
IN	eqv.	5,88E-03	7,34E-04	8,47E-02	0,00E+00	5,40E-04	0,00E+00	7,26E-05	-1,07E-03
SQP	Pt	5,43E-01	1,49E-01	2,33E+00	0,00E+00	1,12E-01	0,00E+00	5,34E-02	9,64E-02
	kg CFC 11								
ODP	eqv.	5,86E-09	2,53E-09	4,94E-08	0,00E+00	1,88E-09	0,00E+00	2,55E-10	1,53E-09
DOCD	kg NMVOC								
PUCP	eqv.	3,75E-04	1,05E-04	1,16E-03	0,00E+00	5,49E-05	0,00E+00	5,43E-06	3,55E-04
ADP-f	MJ	1,46E+00	1,75E-01	8,80E+00	0,00E+00	1,29E-01	0,00E+00	1,73E-02	4,36E-01
ADP-mm	kg Sb-eqv.	6,45E-07	2,38E-07	1,69E-06	0,00E+00	2,16E-07	0,00E+00	5,36E-09	4,22E-08
WDP	m ³ world eqv.	1,45E-02	6,99E-04	1,10E-01	0,00E+00	4,61E-04	0,00E+00	4,06E-04	1,19E-02
AP = Acidification; GWP-total = Global warming potential; GWP-b = Global warming potential – Biogenic; GWP-f = Global warming poten-									
tial – Fossil; GWP-luluc = Global warming potential - Land use and land use change; ETP-fw = Ecotoxicity, freshwater; PM = Particulate									
Matter; EP-	n = Eutrophicatio	n marine; EP-	-fw = Eutroph	ication, fresh	water; EP-T =	Eutrophicatio	on, terrestrial	HTP-c = Hun	nan toxicity,
cancer; HTP	-nc = Human toxi	city, non-cand	cer; IR = Ionis	ing radiation,	human healt	h; SQP = Land	d use; ODP =	Ozone deplet	ion; POCP =

Photochemical ozone formation - human health; ADP-f = Resource use, fossils; ADP-mm = Resource use, minerals and metals; WDP = Water use

Table 10: Results of the LCA – Environmental parameters

Results of the LCA – Environmental parameters									
Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
PERE	MJ	-3,16E-01	2,67E-03	8,14E-01	0,00E+00	1,61E-03	0,00E+00	2,46E-04	-1,27E-02
PERM	MJ	5,25E-01	0,00E+00	6,30E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	2,09E-01	2,67E-03	8,77E-01	0,00E+00	1,61E-03	0,00E+00	2,46E-04	-1,27E-02
PENRE	MJ	1,13E+00	1,85E-01	8,87E+00	0,00E+00	1,37E-01	0,00E+00	1,84E-02	4,53E-01
PENRM	MJ	4,12E-01	0,00E+00	2,82E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	1,54E+00	1,85E-01	9,15E+00	0,00E+00	1,37E-01	0,00E+00	1,84E-02	4,53E-01
SM	kg	1,16E+00	0,00E+00	1,60E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	5,34E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	1,79E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m ³	6,48E-04	2,50E-05	2,99E-03	0,00E+00	1,57E-05	0,00E+00	2,06E-05	2,26E-04
HWD	kg	6,10E-07	4,53E-07	6,50E-06	0,00E+00	3,26E-07	0,00E+00	2,03E-08	7,49E-06
NHWD	kg	3,64E-02	7,84E-03	6,22E-02	0,00E+00	8,17E-03	0,00E+00	9,42E-02	6,12E-03
RWD	kg	4,57E-06	1,14E-06	7,12E-05	0,00E+00	8,46E-07	0,00E+00	1,14E-07	-3,70E-07
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	0,00E+00	0,00E+00	1,18E-02	0,00E+00	0,00E+00	1,08E+00	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EET	MJ	0,00E+00	0,00E+00	9,28E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	5,39E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

PERE = Renewable primary energy ex. raw materials; PERM = Renewable primary energy used as raw materials; PERT = Renewable primary energy total; PENRE = Non-renewable primary energy ex. raw materials; PENRM = Non-renewable primary energy used as raw materials; PENRT = Non-renewable primary energy total; SM = Use of secondary material; RSF = use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water; HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EET = Exported energy thermic; EEE = Exported energy electric

6. LCA: Interpretation

For an easier understanding, the results are processed graphically, in order to recognize relationships and connections between the data more clearly.

The following figure shows the percentage of the product phases in the environmental impact categories.

Figure 1: Percentage of the product phases in the environmental impact categories

The figure shows that for the environmental impact categories raw material supply A1 and the manufacturing A3 during the production phase have the highest percentages. The high share of production phase A3 is related to the high electricity consumption in steelmaking with an electric arc furnace (EAF). The high value for the impact categorie HTP-nc is related to the high share of nuclear energy in electricity production.

7. References	
Ecoinvent, 2019	Ecoinvent Datenbank Version 3.6 (2019)
EN 15804	EN 15804:2012+A2:2019: 2020: Sustainability of construction works - Environ- mental product declarations - Core rules for the product category of construc- tion products
ISO 14025	DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures
ISO 14040	DIN EN ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework; EN ISO 14040:2006
ISO 14044	DIN EN ISO 14044:2006-10, Environmental management - Life cycle assessment - Requirements and guidelines; EN ISO 14040:2006
PCR A	General Program Category Rules for Construction Products from the EPD pro- gram Kiwa-Ecobility Experts, R.0_2021-07-16
PCR B	Requirements on the Environmental Product Declarations for construction steel products (Edition 2020-03-13 (draft)
R <think, 2021<="" td=""><td>R<think; 2021<="" nibe;="" online-epd-tool="" td="" von=""></think;></td></think,>	R <think; 2021<="" nibe;="" online-epd-tool="" td="" von=""></think;>

	Publisher	Mail	DE.Ecobility.Experts@kiwa.com
kiwa Ecobility Experts	Kiwa - Ecobility Experts	Web	https://www.kiwa.com/de/de/ub
	Kiwa GmbH		er-kiwa/ecobility-experts/
	Voltastr.5,		
	13355 Berlin		
	Germany		
	Programme operator	Mail	DE.Ecobility.Experts@kiwa.com
kiwa Ecobility Experts	Kiwa - Ecobility Experts	Web	https://www.kiwa.com/de/de/ub
	Kiwa GmbH		er-kiwa/ecobility-experts/
	Voltastr.5		
	13355 Berlin		
	Germany		
kiwa	LCA practitioner:	Tel.	+49 30 467761 43
	Kiwa GmbH	Mail	DE.Nachhaltigkeit@kiwa.com
	Voltastr. 5	Web	https://www.kiwa.com/
	13355 Berlin		
	Germany		
	Owner of the declaration:	Tel.	+32 71 270111
	RIVA Thy Marcinelle S.A.	Mail	www.thy-marcinelle.com
	Rue de L'Acier 1	Web	info.tm@rivagroup.com
	B-6000 Charleroi		
	Belgium		

Kiwa-Ecobility Experts - established member of