

Environmental Product Declaration

as per ISO 14025 and EN 15804

Owner of the declaration:	MINIERA SAN ROMEDIO SRL
Publisher:	Kiwa-Ecobility Experts
Programme operator:	Kiwa-Ecobility Experts
Registration number:	EPD-Kiwa-EE-323-EN
Issue date:	07.08.2023
Valid to:	07.08.2028

VOLCALITE AIR PLUS

VOLCALITE AIR PLUS is an insulating plaster with a thermal conductivity of 0.029 W/m·K.

1. General information

Miniera San Romedio

Programme operator

Kiwa-Ecobility Experts Voltastr. 5 13355 Berlin Germany

Registration number

EPD-Kiwa-EE-323-EN

This declaration is based on the Product Category Rules

EN 16908:2017+A1:2022

Issue date

07.08.2023

Valid to

07.08.2028

VOLCALITE AIR PLUS

Owner of the declaration

Miniera San Romedio Srl Località alla Miniera 38012 Predaia (TN) Italy

Declared product / declared unit

1 ton (1000 kg) of VOLCALITE AIR PLUS

Scope

This EPD refers to a specific product: an insulating mineral plaster based on Natural Hydraulic Lime (NHL) and aerogel produced by Miniera San Romedio Srl in its plants in the province of Trento (Italy). The data used to perform the LCA analysis were provided by Miniera San Romedio Srl and referred to the production of one year, and the information are relative to the period 2021-2022. The geographical area assumed for the application and end-of-life of the product is Italy. The study was performed following the so-called from-cradle-to-gate approach with modules C1-C4 and D.

This EPD is intended to be used for businessto-consumer communications. The owner of the declaration is liable for the underlying information and evidence.

Kiwa-Ecobility Experts assumes no liability for manufacturer's information, LCA data and evidence].

Verification

The European standards EN 15804+A2:2019 (10/2021) serve as PCR.

Independent verification of the declaration and data according to ISO 14025:2006.

 \square internal

 \boxtimes external

Frank Huppertz (Head of Kiwa-Ecobility Experts)

Prof. Dr. Frank Heimbecher

(Chairman of the independent expert committee – Kiwa-Ecobility Experts)

Dr.-Ing. Morteza Nikravan (External verifier of Kiwa GmbH)

2. Product

2.1 Product description

The VOLCALITE AIR PLUS is an insulating plaster obtained from the combination of natural hydraulic lime, acting as inorganic binder, and silica aerogel, acting as insulating material. The thermal conductivity of this product is 0.029 W/m·K. Small quantities of gypsum (4 wt%) are added as setting retardant. Vinyl based additives (8 wt%) are added in order to promote the adhesion between the plaster and the substrate. Small quantities of cellulose and starch (< 2 wt%) can be also added; the first to regulate the water retention of the mixture, reducing the risk of too rapid drying of the product in sunny and/or ventilated environmental conditions and the second to regulate and increase the thixotropic characteristics of the mixtures (i.e. their ability to maintain the shape and position taken during the application phase).

2.2 Application

The VOLCALITE AIR PLUS can be used as internal or external plaster with a maximum thickness of 6 cm. Thanks to the low thermal conductivity allows the elimination of thermal bridges and the reduction of energy losses from the building envelope.

2.3 Technical data

In Table 1 the main physical and applicative properties of the considered product are reported.

Table 1: Physical and applic	cative properties of the	VOLCALITE AIR PLUS.
------------------------------	--------------------------	---------------------

Characteristic	Unit	Value	Standard
Doncity	kg/m³	200	UNI EN 1015-
Density	Kg/III	200	10
Applied quantity	kg/m²	4-12	-
Thermal conductivity	M/m V	0.020	UNI EN
Thermal conductivity	W/m·K	0.029	12667:2002

2.4 Placing on the market/ Application rules

VOLCALITE AIR PLUS is CE-marked according to EN998-1. The pre-mixed Miniera San Romedio's products are powder or granulates and therefore they have to be transported to the building site by using 7.5 kg paper bags, collected over a pallet. Pallets range from 50 to 60 bags each one, and can be mechanically moved. Once the product reaches the building site the bags can be used to mix the product with the specified amount of water and either be manually stirred or mechanically mixed. It can be also transported to the construction site unpackaged and directly pumped into a silo already settled on a nearby position.

2.5 Base materials / Ancillary materials

The VOLCALITE AIR PLUS is an insulating plaster obtained from the combination of natural hydraulic lime, acting as inorganic binder, and silica aerogel, acting as insulating material. Small quantities of gypsum (4 wt%) are added as setting retardant. Vinyl based additives (8 wt%) are added in order to promote the adhesion between the plaster and the substrate. Small quantities of cellulose and starch (< 2 wt%) can be also added; the first to regulate the water retention of the mixture, reducing the risk of too rapid drying of the product in sunny and/or ventilated environmental conditions and the second to regulate and increase the thixotropic characteristics of the mixtures (i.e. their ability to maintain the shape and position taken during the application phase).

In Table 2 the composition of the considered product is reported.

Table 2: Composition of the VOLCALITE AIR PLUS.

Product		Aerogel [wt%]	NHL* [wt%]	Vinyl resin [wt%]	Additives [wt%]	
VOLCALITE PLUS	AIR	35	55	8	<2	

^{*} Comprising setting retardant (4 wt% of the total NHL content)

The paper bag used as packaging (2.74 kg for 1 ton of product) contains 1.77 kg of biogenic carbon. The product does not contain biogenic carbon.

2.6 Manufacturing

2.6.1 Manufacturing process of the Binder (Natural Hydraulic Lime)

The unprocessed marlstone is extracted from the pit in Predaia (TN), through a mixed explosive. The obtained marlstone is then collected through a Diesel bulldozer and transported with a Diesel lorry from Predaia (TN) to the Ville d'Anaunia (TN) facility, where the material is subjected to a first crushing. After the first crushing of the marlstone, part of this material is used as corrective and it is not crushed anymore, but it is transported into a specific hopper. Through a conveyor belt the crushed marlstone that is not intended to be used as corrective is then transported to the cooking plant, fed with hard coal. In the cooking plant the material is subjected to a slow thermal treatment at 900-1200 °C, that can last up to 48 hours, and the treated material is then transported through a conveyor belt in the maturation hopper. After the thermal treatment, the material is then subjected to a first and a second milling phase, in order to reach the required granulometry. The lime-based end product (i.e. the binder) is obtained mixing the milled lime, the setting retardant and the corrective marlstone (i.e. the marl-stone extracted from the pit of Predaia, transported to the cooking plant, milled and not subjected to the thermal treatment).

2.6.2 Aerogel

The Aerogel P200 is purchased from Cabot GmbH (Rheinfelden, Germany). Data regarding the production process of aerogel were found in literature. The production process of silica aerogel was modelled starting from the work of Dowson et al. while the synthesis of the main reactant used for the synthesis of aerogel (tetraethoxysilane) from the work of Sánchez-Ramírez et al. Data for the inventory analysis were taken from the above-mentioned publications. In particular, the production of Tetraetoxysilane is performed starting from silicon tetrachloride, ethanol and nitrogen through a reactive distillation process, while the production of silica aerogel was done through a supercritical drying process.

Manufacturing of the final product

The lime used in the premixed products as binder is loaded on a truck and transported from the Tassullo plant (Ville d'Anaunia-Trento) plant to the Mollaro plant (Predaia-Trento) facility, and put in a cistern. The mixing operations between NHL and aerogel are performed in the plant of Mollaro. The mixed powders are then packed through a bagging system, by using a paper bag with a capacity of 7.5 kg, palletized, and then directly distributed.

According to the EN 15804:2012+A2:2019 standard, the present LCA study was performed following the so-called from-cradle-to-gate approach with modules C1-C4 and D considering thus the following steps:

- Extraction and processing of the raw materials (A1);
- Transport of the acquired raw materials to the manufacturer and internal transport of the extracted raw materials (A2);
- Production of the materials and mixing operations (A3).

- Deconstruction/demolition (C1)
- Transport of demolition wastes (C2)
- Waste treatment (C3)
- Waste disposal (C4)
- Benefits and impacts beyond the system boundaries (D)

A schematic process flow diagram is shown in Figure 1.

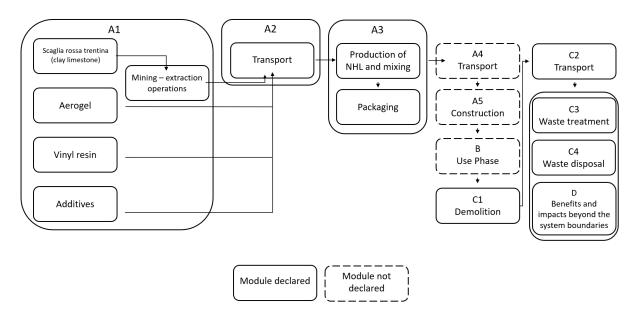


Figure 1: [Graphic schematic process flow diagram for the life cycle of VOLCALITE AIR PLUS.]

2.7 Packaging

Paper bags are used to stow 7.5 kg of premixed product.

2.8 Reference Service Life (RSL)

Since the use phase is not considered, the reference service life (RSL) as per ISO 15686-1, -2, -7, and -8 has not been declared.

2.9 Other Information

For further information on this product please visit the webpage under the following link: https://www.tassullo.it/prodotto/volcalite-air-plus

3. LCA: Calculation rules

3.1 Declared unit

In accordance with the EN 15804+A2:2019 and EN 16908:2017+A1 1 ton of product is chosen as the declared unit (see Table 3).

Table 3: Declared unit used for the calculations.

Product	Unit	Value
Declared Unit	Ton	1
Conversion factor to 1 kg	kg	1000

3.2 System boundary

In accordance with the EN 15804+A2:2019 this study was performed following the so-called from-cradle-to-gate approach with modules C1-C4 and D. In Table 4 the system boundaries of the considered product are listed.

Table 4: system boundaries of the VOLCALITE AIR PLUS.

Module	Modul declared	within the system boundary	Outside the system boundary
A1 Raw Material	Yes	Х	
A2 Transport	Yes	Х	
A3 Manufacturing	Yes	Х	
A4 Transport	No		Х
A5 Installation	No		Х
B1 Use Phase	No		Х
B2 Maintance	No		Х
B3 Repair	No		Х
C1 De-Construction	Yes	Х	
C2 Transport	Yes	Х	
C3 Waste treatment	Yes	Х	
C4 Landfill	Yes	Х	
D Considered loads and benefits outside of the sys- tem boundary in Module D	Yes	Х	

3.3 Estimates and assumptions

The electrical energy is derived from renewable energy source (hydropower) that have obtained certification with the guarantee of origin. The electrical energy is converted from high voltage to low voltage using an electrical transformer located close to the plants. The certification of the renewability of the energy covers to whole period analysed in this study (2021-2022). For as concerns the energy source to feed the furnace for the NHL production, hard coal, with a total heat evolution of 787 Mcal to cook 1 ton of NHL, was considered. For the internal transportations, gasoline with a calorific power of 45 MJ/kg was considered.

For as concerns the end-of-life stage, the demolition, transport, treatment, and disposal of wastes were modelled using processes present in the Ecoinvent database and modified to the specific case. In particular,

- for the C1 stage (demolition/deconstruction) the use of a diesel operating machine with a productivity of 16.6 min/ton of demolished material and a diesel consumption of 0.9 lt/m³ was considered. A water consumption of 0.018 m³/m³ was considered. Both references were taken from Ivanica et al.
- for the C2 stage a distance of 15 km was assumed according to the data provided by Italia del Riciclo and referring to the year 2021.
- for the C3 and C4 stages, despite the NHL-based mortars can be fully recycled and due to the
 lack of specific information regarding the end-of-life of this product, it was assumed that, after
 a sorting process, 78.1 wt% of inert wastes is recycled while the remaining part is landfilled
 (data provided by Italia del Riciclo and referring to the year 2021). For the sorting process an
 existing Ecoinvent process was adapted to the specific case.
- for the stage D it was considered that the secondary materials were used as alternative to gravel for the production of concrete and for road construction. Benefits and impacts associated with these operations were therefore evaluated.

According to EN 16908:2017+A1 the carbonation of natural hydraulic lime, cement and hydrated lime can be very relevant after demolition with consistent carbon dioxide uptake. The evaluation of carbon dioxide uptake was carried out according to the procedure described in EN 16757. In particular, it was considered that:

- for the C1-C3 stages no carbonation occurs due to the limited time of exposure to air or to the lack of information regarding the duration of air exposure.
- for the C4 stage it was considered a carbon dioxide uptake equal to 75 % of the maximum theoretical carbon dioxide uptake for landfilled wastes. No uptake was considered for recycled wastes.
- for the D stage it was considered a carbon dioxide uptake equal to 100 % of the maximum theoretical carbon dioxide uptake.

The following values (evaluated according to stoichiometry) were used as maximum uptake values:

Natural hydraulic lime: 440 kg/ton.

It should be highlighted that since Miniera San Romedio produces ready mixed products and has no control and no information regarding their applications it was impossible, due to lack of data, to calculate the contribution of carbonation in the use stage (module B).

Regarding the end-of-life of the packaging paper (100 % recyclable), it was not considered since beyond the boundaries of the system.

3.4 Cut-off Criteria

As reported in the EN 15804:2012+A2:2019 standard, all inputs and outputs for which data are available were taken into account in the calculation. Eventual data gaps have been filled with conservative assumptions of average data or generic data available in the Ecoinvent v3.8 database of the SimaPro software. All flows contributing to more than 1 % of the total mass, energy or environmental impact of the system have been included in the life cycle assessment. Eventual neglected processes do not contribute in total more than 5% to the impact categories considered. Because of these reasons, the influence of the additives present in the compositions of the VOLCALITE AIR PLUS reported in Table 2 have been neglected, since their environmental impact is not significant compared to the impact of the main constituents of the product. Moreover, the manufacture of machinery, plants, and other infrastructure required for production of the products under review was not taken into consideration in the present analysis.

3.5 Period under review and Geographical reference area

The specific data were obtained directly by the commissioning company, and are related to the production of one year. The data are referred to the period June 2021-June 2022. They were obtained by means of specific measures related to the energy consumption and mass flows in the plant of Ville d'Anaunia (Trento), where the NHL is produced, and to the mass and energy flows in the plant of Mollaro (Trento), where NHL and Aerogel are mixed. Manufacturer-specific data are referred to the period 2021-2022, while generic data are less than 10 years old. Moreover, process-specific data are based on the average of an operating year.

3.6 Data quality

For this study, the data quality requirements defined in ISO 14044 regulation have been considered. In order to ensure coherence, data with the same level of detail have been used, as well as under the same methodological considerations. Data and methods used for this study have been described with

the purpose of being reproducible by a third independent party. Whenever possible, generic data used for the study are representative of the location where the process belongs (for example, the production of electrical energy). The data has been collected from the plants of Ville D'Anaunia and Mollaro (both in province of Trento). Data regarding the production process of aerogel were found in literature and adapted to the specific case. Data were associated to a specific input selected from the database Ecoinvent v3.8 (2021). The inventory analysis has been thus modelled by using the SimaPro software.

3.7 Allocation

Allocations were avoided.

3.8 Comparability

In order to assure the comparability of the obtained results, all datasets to be compared have been created in accordance with EN 15804, and the product-specific performance characteristics have been taken into account. In principle, a comparison or assessment of the environmental impacts of different products is only possible if they have been prepared in accordance with EN 15804.

4. LCA: Scenarios and additional technical information

No scenario or additional technical information to be declared.

5. LCA: Results

Table 5 show the results of the impact assessment indicators, resource use, waste and other output streams for the declared unit (1 ton of VOLCALITE AIR PLUS). The results presented here refer to the declared product. In Table 6 the results of the biogenic carbon content are reported.

Disclaimer on ADP-e, ADP-f, WDP, ETP-fw, HTP-c, HTP-nc, SQP: The results of these environmental impact indicators must be used with caution, as the uncertainties in these results are high or as there is limited experience with the indicator.

Disclaimer on IR: This impact category mainly addresses the potential effect of low dose ionizing radiation on human health in the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents and occupational exposures, nor does it consider radioactive waste disposal in underground facilities. Potential ionizing radiation from soil, radon, and some building materials is also not measured by this indicator.

Table 5: Results of the impact assessment indicators, resource use, waste and other output streams.

Description of the system boundary																
Product	stage		Construction sta	on process ge				Use stage					End of I	ife stage		Benefits and loads beyond the system boundaries
Raw material supply	Transport	Manu- facturing	Transport from manufacturer to place of use	Construction -installation process	Use	Main- tenance	Repair	Replacement	Refur- bishmen	Operational energy use	Operational water use	De- construction / demolition	Transport	Waste	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	MND	MND	MNR	MNR	MNR	MND	MND	MND	MND	Χ	Х	Х	Х	Х

X=Module declared | MND=Module not declared

LCA results - Indicators describing environmental impacts based on the impact assessment (LCIA): 1 ton of VOLCALITE AIR PLUS (EN 15804+A2)

		•	-							
Parameter	Unit	A1-A3	C1	C2	C3	C4	D			
	Core environmental impact indicators (EN 15804+A2)									
GWP-total	kg CO2 eqv.	4.09E+03	7.62E+00	1.37E+00	1.73E+00	-3.86E+01	-1.92E+02			
GWP-f	kg CO2 eqv.	4.06E+03	7.61E+00	1.37E+00	1.68E+00	-3.86E+01	-1.92E+02			
GWP-b	kg CO2 eqv.	2.70E+01	5.33E-03	1.39E-03	4.62E-02	1.25E-03	-1.11E-01			
GWP-luluc	kg CO2 eqv.	4.65E+00	1.13E-03	4.90E-04	3.51E-03	1.09E-03	-2.15E-03			
ODP	kg CFC 11 eqv.	6.62E-04	3.16E-06	3.31E-07	1.16E-07	4.67E-07	-3.55E-07			
AP	mol H+ eqv.	1.99E+01	3.65E-02	9.54E-03	1.04E-02	1.08E-02	-2.35E-02			
EP-fw	kg P eqv.	1.66E+00	3.03E-04	8.50E-05	1.50E-03	1.06E-04	-6.12E-04			
EP-m	kg N eqv.	3.49E+00	9.56E-03	3.74E-03	2.26E-03	3.77E-03	-6.73E-03			
EP-T	mol N eqv.	3.58E+01	1.05E-01	4.10E-02	2.18E-02	4.13E-02	-9.02E-02			
POCP	kg NMVOC eqv.	1.33E+01	3.41E-02	1.15E-02	6.05E-03	1.20E-02	-2.11E-02			
ADP-mm	kg Sb-eqv.	5.90E-02	4.85E-06	3.13E-06	1.47E-05	2.63E-06	-5.65E-05			
ADP-f	MJ	7.90E+04	1.99E+02	2.16E+01	3.39E+01	3.22E+01	-4.07E+01			
WDP	m3 world eqv.	1.37E+04	4.16E+00	7.31E-02	3.75E-01	1.45E+00	-8.13E-01			
			Additional environm	ental impact indicators (EN 15	5804+A2)					
CaPM	disease incidence	ND	ND	ND	ND	ND	ND			
IR	kBq U235 eqv.	ND	ND	ND	ND	ND	ND			
ETP-fw	CTUe	ND	ND	ND	ND	ND	ND			
НТР-с	CTUh	ND	ND	ND	ND	ND	ND			
HTP-nc	CTUh	ND	ND	ND	ND	ND	ND			
SQP	Pt	ND	ND	ND	ND	ND	ND			

ADP-mm= Abiotic depletion potential for non-fossil resources | ADP-f=Abiotic depletion for fossil resources potential | AP= Acidification potential, Accumulated Exceedance | EP-fw = Eutrophication potential, fraction of nutrients reaching freshwater end compartment | EP-m= Eutrophication potential, fraction of nutrients reaching marine end compartment | EP-T= Eutrophication potential, Accumulated Exceedance | GWP-b=Global Warming Potential biogenic | GWP-f=Global Warming Potential fossil fuels | GWP-luluc=Global Warming Potential land use and land use change | GWP-total=Global Warming Potential total | GWP-Depletion potential of the stratospheric ozone layer | POCP=Formation potential or tropospheric ozone | WDP=Water (user) deprivation potential, deprivation-weighted water consumption | ETP-fw=Potential Comparative Toxic Unit for ecosystems | HTP-c=Potential Toxic Unit for Humans toxicity, cancer | HTP-nc=Potential Toxic Unit for humans, non-cancer | IRP=Potential Human exposure efficiency relative to U235, human health | PM=Potential incidence of disease due to Particulate Matter emissions | SQP=Potential soil quality index

Parameter	Unit	A1-A3	C1	C2	С3	C4	D
PERE	MJ	1.69E+04	8.53E-01	2.71E-01	6.27E+00	2.75E-01	-1.30E+01
PERM	MJ	-	-	-	=	-	-
PERT	MJ	1.69E+04	8.53E-01	2.71E-01	6.27E+00	2.75E-01	-1.30E+01
PENRE	MJ	8.45E+04	2.12E+02	2.29E+01	3.56E+01	3.42E+01	-4.27E+01
PENRM	MJ	-	-	-	=	-	-
PENRT	MJ	8.45E+04	2.12E+02	2.29E+01	3.56E+01	3.42E+01	-4.27E+01
SM	Kg	-	-	-	=	-	-
RSF	MJ	-	-	-	=	-	-
NRSF	MJ	-	-	-	=	-	-
FW	M3	1.37E+04	3.99E+00	7.35E-02	3.69E-01	1.45E+00	-7.11E-01
HWD	Kg	4.21E-01	5.41E-04	5.23E-05	3.25E-05	4.87E-05	-1.76E-04
NHWD	Kg	3.71E+02	1.79E-01	1.99E+00	1.22E-01	2.19E+02	-6.55E-01
RWD	Kg	1.83E-01	1.40E-03	1.46E-04	2.45E-04	2.11E-04	-2.96E-04
CRU	Kg	-	-	-	=	-	-
MFR	Kg	2.25E-01	-	-	7.81E+02	-	-
MER	Kg	-	-	-	-	-	-
EET	MJ	-	-	-	-	-	-
EEE	MJ	-	-	-	-	-	-

PERE=Use of renewable primary energy excluding renewable primary energy resources used as raw materials | PERM= Use of renewable primary energy resources used as raw materials | PERM= Use of renewable primary energy resources used as raw materials | PENRM= Use of non-renewable primary energy resources used as raw materials | PENRM= Use of non-renewable primary energy resources used as raw materials | PENRT= Total use of non-renewable primary energy resources | SM=Use of secondary material | RSF=Use of renewable secondary fuels | NRSF=Use of non-renewable secondary fuels | FW=Use of fresh water | HWD=Hazardous waste disposed | NHWD=Non-hazardous waste disposed | CRU=Components for re-use | MFR=Materials for recycling | MER=Materials for energy recovery | EET=Exported energy, thermical | EE=Exported energy, electrical

Table 6: results of the biogenic carbon content of VOLCALITE AIR PLUS.

LCA results - information on biogenic carbon content at the factory gate: 1 ton of VOLCALITE AIR PLUS (EN 15804+A2)						
Parameter	Unit	Value				
biogenic carbon content in product	kg C	0				
biogenic carbon content in accompanying packaging	kg C	1.77				
NOTE 1 kg biogenic carbon is equivalent to 44/12 kg CO2						

6. References

ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework

ISO 14044:2006, Environmental management - Life cycle assessment - Requirements and guidelines

ISO 14025:2006: Environmental labels and declarations — Type III environmental declarations — Principles and procedures EN 13249

EN 15804:2012+A2:2019 Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

PCR A: General Program Category Rules for Construction Products from the EPD program Kiwa-Ecobility Experts, R.O. 2021-07-16

EN 16908:2017+A1: Cement and building lime - environmental product declarations - product category rules complementary to EN 15804.

EN16757: Sustainability of construction works – Environmental product declarations – Product category rules for concrete and concrete elements.

Ivanica, R., M. Risse, G. Weber-Blaschke, and K. Richter, Development of a life cycle inventory database and life cycle impact assessment of the building demolition stage: A case study in Germany. Journal of Cleaner Production, 2022. 338: p. 130631.

Frischknecht, R. and N. Jungbluth. Overview and Methodology. Ecoinvent report No. 1. 2007.

Fondazione per lo sviluppo sostenibile, F.U., Unione Imprese Economia Circolare,. L'Italia del Riciclo. 2021; Available from: https://www.cial.it/rapporto-italia-del-riciclo-2021/#:~:text=Secondo%20i%20dati%20Ispra%20sono,e%20il%2060%25%20al%202030.

Dowson, M., M. Grogan, T. Birks, D. Harrison, and S. Craig, Streamlined life cycle assessment of transparent silica aerogel made by supercritical drying. Applied Energy, 2012. 97: p. 396-404.

Sánchez-Ramírez, E., C. Ramírez-Márquez, J.J. Quiroz-Ramírez, G. Contreras-Zarazúa, J.G. Segovia-Hernández, and J.A. Cervantes-Jauregui, Reactive Distillation Column Design for Tetraethoxysilane (TEOS) Production: Economic and Environmental Aspects. Industrial & Engineering Chemistry Research, 2018. 57(14): p. 5024-5034.

Dai, Y., S. Li, D. Meng, J. Yang, P. Cui, Y. Wang, Z. Zhu, J. Gao, and Y. Ma, Economic and Environmental Evaluation for Purification of Diisopropyl Ether and Isopropyl Alcohol via Combining Distillation and Pervaporation Membrane. ACS Sustainable Chemistry & Engineering, 2019. 7(24): p. 20170-20179.

Laveglia, A., L. Sambataro, N. Ukrainczyk, N. De Belie, and E. Koenders, Hydrated lime life-cycle assessment: Current and future scenarios in four EU countries. Journal of Cleaner Production, 2022. 369

7. ANNEX 1 Requirements of the Minimum Environmental Criteria (DM June 23th 2022)

In Table 7 the requirements imposed by Minimum Environmental Criteria (DM June 23th 2022) for the product considered in this project report are summarized. As it can be seen, the product satisfies the legislative requirements imposed by the Italian Legislation on the Minimum Environmental Criteria for construction services.

Table 7: Requirements of the Minimum Environmental Criteria DM June 23th 2022) for the product considered in this project.

	onsidered in this project.								
	Point 2.5 Technical specifications of building materials								
2.5.2	Premixed concrete or	The product considered in this	This requirement can not						
	prepared on the building	EPD is fully developed starting	be applied to these mate-						
	site	from virgin materials, as re-	rials, since they are lime						
		quired for lime based products	based products (see						
		by D.Lgs. 152/2006.	D.Lgs. 152/2006).						
2.5.7c	Thermal and acoustic in-	The product considered in this							
	sulating materials	study has a CE mark and a dec-							
		laration of performance (DoP)							
		that specifies its thermal con-							
		ductivity (λ_D) .							
2.5.7d	Thermal and acoustic in-	The product does not contain							
	sulating materials	substances classified as persis-							
		tent, bioaccumulative and toxic							
		(PBT) and very persistent and							
		very bioaccumulative (vPvB) ac-							
		cording to Annex XIII of the reg-							
		ulation EC 1907/2006 (REACH).							
2.5.7e	Thermal and acoustic in-	The VOLCALITE AIR PLUS is not							
	sulating materials	produced with blowing agents							
		having a reduction potential of							
		the ozone layer higher than zero.							
2.5.7f	Thermal and acoustic in-	The VOLCALITE AIR PLUS is not							
	sulating materials	produced, formulated or applied							
		by using lead based catalysts.							
2.5.7i	Thermal and acoustic in-	The VOLCALITE AIR PLUS is not							
	sulating materials	produced using materials that							
		should contain a minimum							
		amount of recycled/reused ma-							
		terial according to the list pro-							
		vided in the DM June 23 th 2022.							
Point 2.6	Technical specifications of t	he building site							
2.6.2	Dismantling and re-	All the products considered in							
	moval of the materials	this EPD, after the dismantling							
		operations, can be fully sent to							
		reuse, recovery and recycling							
		operations.							
	t	ı							

Note: the other requirements imposed by the Minimum Environmental Criteria are not reported since not applicable for this specific product.

kiwa Ecobility Experts	Publisher Kiwa-Ecobility Experts Voltastr.5 13355 Berlin Germany	Mail Web	DE.Ecobility.Ex- perts@kiwa.com https://www.kiwa.com/de/ de/themes/ecobility-ex- perts/ecobility-experts/
kiwa Ecobility Experts	Programme operator Kiwa-Ecobility Experts Voltastr. 5 13355 Berlin Germany	Mail Web	DE.Ecobility.Ex- perts@kiwa.com https://www.kiwa.com/de/ de/themes/ecobility-ex- perts/ecobility-experts/
UNIVERSITÀ DI TRENTO Dipartimento di Ingegneria Industriale	Prof. Andrea Dorigato University of Trento Department of Industrial Engineering (DII) Via Sommarive 9 38123 Trento (Italy)	Tel. Fax. Mail Web	(+39) 0461/283724 andrea.dorigato@unitn.it https://webapps.unitn.it/d u/it/Per- sona/PER0009668/Curricu- lum
TASSULLO	Owner of the declaration Miniera San Romedio Srl Località alla Miniera 38012 Predaia (Italy)	Tel. Fax. Mail Web VAT	(+39) 0463/662100 (+39) 0463/662113 minierasanromedio@pec.it www.minierasanromedio.it 00602230229

Kiwa-Ecobility Experts - established member of

